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Abstract 

Wave intensity and wave speed are measures used to assess the dynamic properties of the arteries and travelling 
waves within the circulation. Wave intensity and wave speed measured in the carotid artery have the potential to pro-
vide hemodynamic and biophysical insights that can advance our understanding of the physiology of cerebral circu-
lation. However, whilst studies have been performed in different patient cohorts exploring different methodological 
implementations of wave intensity analysis (WIA), to date little work has been done to unify wave measures or pro-
vide reference ranges on which to build the field of research and inform clinical practice. This review thus focuses 
on wave speed and wave intensity in the carotid artery in man with the aim to summarise the current knowledge 
of the field. From this review, the different methods of measurement and the disparity of the reported values currently 
hinder efforts to construct reference ranges for a comparator or intervention to be assessed.
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1 Introduction
Wave intensity is the rate of energy transport in a longi-
tudinal wavefront per unit area. Wave intensity analysis 
(WIA) provides a quantitative measure of the incremen-
tal net energy flux density of travelling waves within the 
circulation or the power carried by the wave per cross-
sectional area. The work done by the wave comprises 
kinetic energy associated with the velocity of flow and 
potential energy associated with the expansion of the 
arterial wall [1]. Wave speed or pulse wave velocity (i.e. 
the velocity at which the blood pressure pulse propagates 

in an artery or system of arteries) is often, but by no 
means invariably, calculated as part of wave intensity 
analysis. Wave speed is generally evaluated in early sys-
tole and is related to the distensibility of the artery as 
shown by the Moens–Korteweg equation [2, 3], i.e. wave 
speed is inversely proportional to the square root of 
distensibility.

So far, little work has focused on the use of WIA for 
understanding the cerebral circulation, or the impact of 
the energy transfer from the extracranial to the intracra-
nial vessels, even though WIA has often been measured 
in the common carotid artery. This is an important area 
of translational and clinical research. For instance, peo-
ple with hypertension are more likely to suffer small ves-
sel disease and have poorer cerebral perfusion [4, 5], and 
increased arterial pressure may heighten the risk of aneu-
rysm formation and rupture at the circle of Willis [6–8]. 
Understanding wave travel could potentially provide a 
better understanding of such pathology and the analysis 
is increasingly showing promise in this context. A recent 

*Correspondence:
Sandra Neumann
Sandra.Neumann@bristol.ac.uk
1 Faculty of Health Sciences, Bristol Medical School, University of Bristol, 
Bristol, UK
2 Department of Bioengineering, Imperial College London, London, UK
3 Department of Population Science & Experimental Medicine, Institute 
of Cardiovascular Science, University College London, London, UK
4 National Heart and Lung Institute, Imperial College London, London, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s44200-024-00058-4&domain=pdf
http://orcid.org/0000-0002-7306-9047


Page 2 of 23Neumann et al. Artery Research 2024, 30:12

study, for example, found that the forward compression 
wave intensity in mid-to-late life predicted faster cogni-
tive decline independent of other cardiovascular risk fac-
tors as well as markers of carotid structure and stiffness 
[9]. At present, however, there are very limited direct 
measurements of the intrinsic mechanical properties of 
the intracerebral arteries in vivo [10].

Let us consider the setting for this physiological 
problem. Blood flow to the cerebral circulation arrives 
through two artery pairs: the left and right internal 
carotid arteries, which largely supply the anterior circu-
lation of the brain, and the left and right vertebral arter-
ies, responsible mainly for the posterior circulation [11]. 
The vertebral arteries converge over the brainstem to 
form the basilar artery. The basilar artery together with 
the internal carotid arteries form a ring-like anastomo-
sis known as the Circle of Willis. The basic anatomy is 
shown in Fig. 1, although variants are common [12]. This 
organisation allows for the re-distribution of blood based 
on demand, can compensate for resistance such as ste-
nosis, and may therefore represent a collateral system to 
protect against hypoperfusion. The anastomotic nature 
of the cerebral arterial anatomy also enables a range of 
shunt and steal phenomena [13] as illustrated by subcla-
vian steal syndrome [14], reversed Robin Hood syndrome 
[15], and luxury perfusion syndrome [16, 17].

From a biophysics perspective, the cerebral circulation 
is unique. Various constraints, which are set out by the 
Monroe-Kellie doctrine [18], are assumed to hold true for 
the perfusion of the brain to be maintained within physi-
ological boundaries. Imbalances and breaches of these 

assumptions are considered to cause marked pathophysi-
ological disturbances, such as Cushing’s triad, ischaemic 
haemorrhage, or syncope. The first constraint is that the 
cerebral circulation is encased in the isovolumetric con-
tainer of the skull. The inlets and outlets (including the 
cerebrospinal fluid space) are generally through non-
compressible bone, which limits the ability for pulsatile 
movement and hypertrophy at these junctures. Second, 
the pressure within the skull must be maintained within 
relatively narrow boundaries to avoid percussion of the 
brain tissue against the bone [19]. Third, the adaption 
to the systolic pressure wave must be sufficient to move 
blood against gravity in the upright position [20], whilst 
tolerating the orthostatic changes to the supine position 
and even inversions (such as handstands and other oddi-
ties humans master).

In this context, we aim to review current knowledge on 
wave speed and wave intensity measures in the carotid 
artery in man. The review will summarise the effect of 
interventions and any other comparations made within 
each study but will not aim to compare interventions 
between reports.

1.1  What is the wave speed measure?
Wave speed (c) is the speed at which a disturbance trav-
els through a medium [21]; in this case, energy through 
arteries. c is dependent on the viscosity of blood and the 
mechanical and geometric properties of the vessel [21, 
22]. c is an indicator of arterial stiffness (or its inverse 
distensibility [23], with higher wave speed indicating a 
stiffer, less distensible vessel.

Fig. 1 Anatomy of the cerebral circulation. Left diagram shows coronal view; Right diagram shows sagittal view
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Whilst aortic wave speed is often measured clinically 
by femoral-carotid pulse wave velocity, this is a weighted 
average over the arterial pathlength and does not account 
for more local variation in arterial vessel mechanics and 
geometry [24]. Regional, or local, wave speed can be esti-
mated by single-point methods derived from the slope 
of the loop of two measured variables such as pressure 
(P) and velocity (U), or flow (Q) and cross-sectional area 
(A). Specifically, these methods are known as the PU-
loop [25], QA-loop [26], ln(D)U-loop [27], and ln(A)
U-loop [28] methods. Alternative formulations based on 
the knowledge of P and U at a single point in the cardiac 
cycle includes the sum of the squares methods (see [29]). 
This method has the advantage of being independent of 
the period of unidirectional waves required for the loop 
methods but has a larger margin of error when applied to 
measures taken close to a reflection site.

The linearity between pressure and diameter over the 
cardiac cycle has been demonstrated using invasive pres-
sure measurements in the carotid artery [30]. However, 
Kowalski et al. (2017) suggested that the wave reflections 
may cause an underestimation of c by –  36.9% (± 6.7%) 
in the carotid artery [31]. Furthermore, it has been 
shown that reflected waves [32] and the proximity of the 
measurement to the reflection site [32–34] significantly 
influence the measured wave speed. Using the diameter-
velocity loop method, Borlotti et  al. [35] showed that 
proximity to the reflection site affects the measured wave 
speed so that a positive reflection coefficient leads to an 
underestimation of wave speed, whilst a negative reflec-
tion coefficient leads to an overestimation of wave speed. 
This is particularly important in the carotid artery given 
its geometry and anatomy; namely the carotid bifurcation 
in the neck, the curvature of the internal carotid siphon 
and the juncture at the Circle of Willis. The degree to 
which the pressure and flow (or velocity) changes are 
affected by reflections and the convective contribution 
is assumed to be negligible in the early part of systole 
when measurements of c are typically made. The linear-
ity of elasticity of the vessel wall over the physiological 
pressure range is a necessary assumption, however, there 
is not sufficient evidence at present to demonstrate the 
absolute validity of this assumption.

When comparing the theoretical local wave speed to 
that measured experimentally, discrepancies are observed 
[36, 37]. Namely, based on theoretical grounds from its 
composition and on experimental studies the relation-
ship between stress and strain in arteries is known to be 
non-linear [38]. Nonetheless, the assumption of a unique 
elastic modulus (incremental elastic modulus) may be 
approximately valid within the pressure range of the car-
diac cycle, however, differences in operating pressure 
may be relevant when comparing measures of c between 

individuals (e.g. between normotensive and hypertensive 
individuals) [39]. Extrinsic factors, the tethering of the 
vessel, and the compressibility of the surrounding tissue 
have also been suggested to affect c [40].

Therefore, given the special limitations of the cerebral 
circulation suggested above, and the internal carotid 
artery in particular, measuring wave speed in this artery 
experimentally is of particular future interest.

1.2  What is wave intensity analysis?
Unlike wave speed, which is measured in m/s, the units 
of wave intensity depend on the method of measurement 
and introduces the variable of local distensibility [41] 
(e.g. if derived from pressure and velocity, it is commonly 
reported in W/m2 or mmHg·m·s−3, whereas if derived 
from diameter and velocity it is commonly reported in 
 m2/s). Despite the variability of units, the measures are 
essentially equivalent although not interchangeable, 
and related to each other through the tube law which 
describes the relationship between the pressure and the 
area (or diameter) of the artery.

The original method for analysing wave intensity 
(dI = dPdU) describes the use of pressure and veloc-
ity to calculate wave intensity, defined as the maxi-
mum value of the composite waves, and wave energy, 
defined as the integral of the wave intensity over time. 
Other approaches, such as using a logarithm of the 
area and velocity, have since been proposed [28, 34]. A 
large subset of studies report wave intensity using the 
time-corrected formula, dP/dt × dU/dt. This carries the 
advantage of being able to compare data acquired with 
different sampling rates, but with the disadvantage that 
the resulting units are complex and unintuitive to inter-
pret (mmHg·m·s−3) [42]. An alternative approach where 
dI is expressed per cardiac cycle and which preserves its 
interpretability has been proposed [43].

The net wave intensity can be separated into its 
component forward and backward waves if the wave 
speed is known [47]. Net wave intensity is a result of 
the algebraic sum of the forward and backwards travel-
ling waves [44, 45]. Compression waves are associated 
with a rise in pressure, whilst decompression waves 
are associated with a fall in pressure. Whilst there are 
many reflections and re-reflections [46], wave intensity 
in most large elastic arteries is commonly described in 
terms of three major wave components. The first is a 
forward compression wave (FCW) which carries most 
of the energy over the cardiac cycle and is a measure 
of the rate of forward wave energy density propaga-
tion in early systole due to ventricular ejection. This 
is followed by a smaller backward compression wave 
(BCW) which, outside the coronary circulation, rep-
resents backward travelling waves (reflections) from 
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various sites of impedance mismatching, such as those 
due to branching, confluences and changes in cross-
sectional areas and/or material properties of the arter-
ies [48]. Finally at the end of systole (protodiastole), a 
forward decompression wave (also known as the for-
ward expansion wave, FEW) decelerating systolic flow 
in the arteries is observed. This is caused by the slowing 
of ventricular contraction which creates a suction effect 
preceding and contributing to aortic valve closure [49, 
50]. It has also been proposed that the end-systolic 
FEW is caused by the inertial effects of the negative re-
reflection of the BCW [49]. Figure 2 illustrates the vari-
ous wave components.

A strong correlation between the energy of the BCW 
and FCW has been shown in the common carotid 
artery of healthy volunteers, suggesting that the for-
ward wave energy generated by the left ventricle is a 
predictor of the amplitude of the reflected wave [45] 
Anti-hypertensive treatment, which effectively lowers 
blood pressure, increases the FCW and decreases the 
BCW [51]. In a virtual population of 2000 subjects, it 
was shown that wave intensity analysis may prove use-
ful in the diagnostics and treatment of people with 
heart failure [52].

Interestingly, in the carotid artery, another forward 
decompression wave in mid-systole has been reported 
[42, 49, 53]. This wave is reported to have a variable 
size. Hughes et  al. [53] saw that this augmentation in 
the carotid artery was associated with a larger second 
forward decompression wave, suggesting a possible 
relationship between the additional wave and inertial 
or re-reflection effects.

2  Methods
This systematic review follows the PRISMA-P guide-
lines for systematic reviews [54]. The inclusion criteria 
were original research articles measuring local wave 
speed or wave intensity in the human carotid artery. 
Studies reporting any of the measures (i.e. wave speed, 
wave intensity, forward compression wave energy, for-
ward decompression wave energy, backward compres-
sion wave energy) were included regardless of whether 
they reported only a subset of the measures. Articles 
were included if they had full-text versions available 
in English and were published between 1990 and Janu-
ary 1st 2023. Review articles, meta-analyses, studies in 
non-human species and in silico models were excluded.

The following PubMed searches were run on the 15th 
of April 2020, repeated on the 1st of April 2021, and on 
the 12th February 2023 with the following terms: (1.) 
carotid artery + wave speed, (2.) carotid artery + wave 
intensity analysis, (3.) internal carotid artery + wave 
speed, (4.) internal carotid artery + wave intensity 
analysis.

Data extracted were directly from the articles and 
checked by the second investigator independently. The 
data extracted was: (1) Wave speed, (2) Net wave inten-
sity or energy, (3) forward compression wave intensity 
or energy, (4) forward decompression wave intensity or 
energy, and (5) backward compression wave intensity 
or energy.

Risk of bias was not assessed as the bias domains [55] 
were not considered relevant to the particular type of 
studies available in the literature. For example, selec-
tion, performance and detection bias require the blind-
ing of outcome assessment, which was not a feasible 
objective. Further, attrition bias, reporting bias and 
other biases are better assessed against a standard con-
vention of reporting which is not available at the pre-
sent time for wave speed or wave intensity analysis in 
the carotid artery. Instead, data are presented with the 
details of the population studies in each case, as well as 
the method of measurement.

3  Results
The search yielded a total of 279 articles, of which 14 
were duplicates, resulting in a total of 265 articles that 
were screened based on abstract content. In total, 59 
articles were ultimately included. These contained 
either wave intensity analysis in the carotid artery, wave 
speed measurements in the carotid artery, or both. 
PRISMA flow diagram is shown in Fig. 3.

Fig. 2 Illustration of wave intensity (peaks) and wave energy (shaded 
areas). Blue; FCW Forward Compression Wave, Red; BCW Backward 
Compression Wave, Green; FEW Forward Decompression (Expansion) 
Wave. NB: the latter part of the diastolic period of the cycle has been 
omitted for clarity
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3.1  Wave speed in the common carotid artery and its 
branches

Only two studies measured wave speed in the internal 
carotid artery experimentally [56, 57]. Neumann et  al. 
found wave speeds around 1–1.5  m/s in the internal 
carotid artery using the lnA-U loop method. Ayadi et al. 
used two methods of wave speed estimation, i.e. the 
foot-to-foot method ( c = �z

�t
 , where Delta z represents 

the distance between two anatomical cross sections, 
and Delta t is the time interval between the feet of two 
waves) and a mathematical modification of the foot-
to-foot model (summarised as ( c = 2L

t0
 , where L is the 

distance between the measurement point and reflection 
area and  t0 is the arrival time of the first reflected wave). 
Using the traditional foot-to-foot method, the authors 
reported a similar wave speed of 2.6 ± 0.2  m/s in the 
young (n = 11, 0 men, 29.4 ± 6.8 years), and 3.3 ± 0.3 m/s 
in the older group (n = 11, 8 men, 66 ± 14.9 years). How-
ever, using the new mathematical model which corrects 
for the temporal inaccuracy of the foot-to-foot method, 
the authors reported wave speeds of 5.2 ± 0.5 m/s in the 
young, and 6.3 ± 0.4  m/s in the older group, suggest-
ing more traditional methods may underestimate wave 
speed in the internal carotid artery [56].

All other studies report wave speed in the common 
carotid artery. The measurements in the human carotid 
artery are summarised in Table 1.

The average wave speed (± standard deviation) 
reported in healthy volunteers (regardless of method) 
was 5.58 ± 2.1  m/s, with the median wave speed at 
5.38 m/s. The minimum average speed was reported in 
endurance-trained men (0.8 m/s, age 27 ± 4 years) using 
the lnDU loop method [58] and the maximum was 
reported in healthy volunteers (14.2  m/s, 60 ± 9  years) 
using the PU loop method [59].

Whilst it is known that wave speed increases with age 
[60], this accounts for 2–3  m/s of the variability and, 
therefore, the range of values reported in the literature 
cannot be accounted for by age alone. Interestingly, it 
was not possible to determine a bias to yield a higher or 
lower wave speed value based on the method used.

One study reported wave speed in the left and the 
right common carotid separately, using three different 
methods of measurement, and found that wave speed 
was consistently higher in the right compared to the 
left CCA [61].

Wave speed is consistently reported as marginally 
higher in men compared to women [45, 62].

3.2  Wave intensity in the carotid artery
Wave intensity in the internal carotid artery was 
assessed in two studies only [56, 90], while several stud-
ies have assessed wave intensity in the common carotid 

Fig. 3 PRISMA flow diagram of the records identified, screened and included
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Table 1 Wave speed in human common carotid artery

Method of measurement Wave speed (m/s) Population References

PU 4.0 (left CCA)
7.8 (right CCA)

Healthy volunteers (n = 8, 8 men, age range 23–31 years) [61]

Wave component p & u 3.5 (left CCA)
6.7 (right CCA)

Sum of the squares (c∑2) 3.9 (left CCA)
7.0 (right CCA)

PU (Bramwell Hill) 6.17 ± 1.34 Volunteers (n = 22, 13 men, 49 ± 17 years) [63]

PU loop 7.53 (± 2.85) Healthy volunteers (n = 37, 17 Men, 47.2 ± 5.4 years) obtained 
from the Asklepios population study [64]

[32]

QA loop 3.4 ± 1.1

PU1-5 (harmonic-based correction) 4.99 ± 0.87

PU loop (Median) 8.7 Placebo, ASCOT substudy (n = 62, 57 male, 64 ± 7 years) [65]

8.1 Atorvastatin, ASCOT substudy (n = 78, 70 male, 64 ± 8 years)

PU loop 8.5 ± 3.1 Amlodipine-based regimen, ASCOT substudy (n = 122, 99 men, 
64.3 ± 7.1 years)

[66]

9.0 ± 5.4 Atenolol-based regimen, ASCOT substudy (n = 138, 119 men, 
63.3 ± 7.6 years)

PU loop 14.2 ± 1.4 Healthy volunteers (n = 29,13 men, 60 ± 9 years) [59]

14.0 ± 0.9 Compensated systolic heart failure patients on medication (n = 67, 42 
men, 66 ± 10 years)

PU loop 7.5 ± 2.4 Hypertensive, treated, volunteers (n = 12, 12 men, 63 ± 9 years) [67]

PU loop 5.40 (± 0.34*) Healthy volunteers (n = 21, 14 men, 44 ± 6 years) [42]

ln(D)P loop [31] 3.9 ± 0.5 Ex pre-term (n = 76, 40 men age 18.2 ± 1.3 years,) [68]

3.9 ± 0.5 Control (n = 42, age 18.6 ± 0.9, 16 men)

ln(D)P loop 3.49 ± 0.45 Control group (n = 42, 15 male, median age 19 years) [68]

3.71 ± 0.50 Coarctation Patients (n = 43, 21 male, median age 25 years)

lnDU loop 8.4 ± 1.9 Healthy volunteers (n = 12, 6 men, aged 27 ± 2 years)
Rest Day 1

[69]

10.2 ± 3.4 Exercise 1

7.9 ± 2.6 Rest Day 2

9.3 ± 3.2 Exercise Day 2

lnDU loop 10.6 Healthy volunteer (n = 1) [70]

lnDU loop ♀ 3.71 (± 1.21)
♂ 4.16 (± 1.58)

Volunteer, subgroup of Asklepios population study [64]s (n = 70, 35 men, 
age range 35–55 years)

[62]

lnDU loop ± (1/2) (dU± /dlnD±) 4.03 ± 1.64 Volunteers, subgroup of Asklepios population study [64] (n = 1774, 840 
men, mean age 45.8 ± 6 years)

[24]

lnDU loop ± (1/2) (dU± /dlnD±) 4.45 ± 0.73 Volunteers free of major cardiovascular events (n = 47, 59% men, mean 
age 24 ± 5 years)

[71]

5.58 ± 1.12 Volunteers free of major cardiovascular events (n = 78, 53% men, mean 
age 51 ± 6 years)

6.49 ± 1.50 Volunteers free of major cardiovascular events (n = 78, 68% men, mean 
age 67 ± 5 years)

lnDU loop 6.9 Hypertensive patient (n = 1) [27]

lnDU loop 0.8 ± 0.2 Endurance trained volunteers (n = 8, 8 men, aged 27 ± 4 years) [58]

DU; Bramwell–Hill equation based 
on distension curve

8.9 ± 1.8 Type 2 diabetics (n = 191, 148 men, aged 65 ± 7 years) [72]

7.9 ± 1.5 Non-diabetics (n = 94, 66 men, aged 62 ± 8 years)

(dP/dU)/ρ 3.10 ± 1.3 Healthy volunteers, baseline (n = 55, 12 men, 22 ± 5 years) [73]

4.00 ± 1.9 After exercise

One‐point carotid PWVβ (m/s) 4.08 ± 0.51 Baseline, healthy volunteers (n = 55, 12 men, 22 ± 5 years)

4.44 ± 1.20 Post high-intensity cycling, healthy volunteers
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Table 1 (continued)

Method of measurement Wave speed (m/s) Population References

(dP/dU)/ρ 6.8 ± 1.1 Normotensive volunteers (n = 20, 13 men, 56 ± 4 years) [74]

7.8 ± 1.0 Hypertensive volunteers (n = 21, 14 men, 58 ± 8 years)

7.5 ± 1.4 Hypertensive volunteers after 3 months of barnidipine therapy

7.5 ± 1.7 Hypertensive volunteers after 6 months of barnidipine therapy

(dP/dU)/ρ 3.5 ± 4.9 Children of African American descend (n = 154, 66% male, 10.3 ± 0.9 years) [75]

3.3 ± 1.3 Children of white descend (n = 115, 64% male, 10.6 ± 0.9 years)

(dP/dU) × 1/ρ 5.7 (Median) Healthy men (n = 57 men, 47 ± 13 years) [45]

6.2 (Median) Healthy women (n = 49 men, 45 ± 12 years)

dP/(ρ x dU) 4.0 ± 0.6 Healthy volunteers (n = 10, 5 men, 42 ± 13 years) [76]

3.7 ± 0.3 Control group (60 min)

3.7 ± 0.3 Caffeine group (baseline) (n = 17, 8 men, 42 ± 13 years)

4.5 ± 0.4 Caffeine group (60 min)

(dP/dU) x ρ 4.28 ± 1.0 Healthy volunteers, Baseline (n = 22, 22 male, 21.7 ± 1.4 years) [77]

5.58 ± 1.68 Cold Pressor Test

(dP/dU) x ρ 3.3 ± 1.4 Healthy volunteers, before exercise (n = 16, 16 men, 26 ± 6 years) [78]

4.6 ± 1.3 After exercise

PWV = (Ps – Pd)/2 * ln(Ps/Pd)[(Ds – Dd)Dd] 4.03 ± 0.19 Healthy volunteers (n = 191, 50 men)
N = 28 (aged 20–30)

[60]

5.16 ± 0.31 N = 15 (aged 30–40)

6.20 ± 0.17 N = 34 (aged 40–50)

6.36 ± 0.12 N = 73 (aged 50–60)

6.92 ± 1.17 N = 34 (aged 60–70)

PWV
In((Ps/Pd)/(Ds/Dd) – 1) x Pd /2 ρ)1/2

3.90 ± 0.8 Control (n = 20, 12 male, 13.4 ± 6.0 years) [79]

3.56 ± 0.10 Fontan (n = 34, 16 male, 11.5 ± 8.6 years)

One‐point carotid PWVβ (m/s) 6.8 ± 1.5 Survivors of patients with congestive heart failure and reduced ejection 
fraction (n = 39, 69.6 ± 12.7)

[80]

6.6 ± 1.7 Non-survivors of patients with congestive heart failure and reduced ejec-
tion fraction (n = 23, 69.1 ± 9.2)

One‐point carotid PWVβ (m/s) 5.35 ± 1.2 Male healthy volunteers (n = 388, 43.0 ± 17.4) [81]

5.48 ± 1.3 Female healthy volunteers (n = 292, 44.8 ± 17.7 years)

One‐point carotid PWVβ (m/s) 5.42 ± 1.0 Normotensive (n = 145, 91 men, 50 ± 10.1 years) [82]

6.5 ± 1.6 Hypertensive (n = 145, 96 men, 51.9 ± 12.1 years)

PWVβ (m/s)
where β = ln(Ps/Pd)/[(Ds – Dd)/Dd]

5.3 ± 1.0 Young men, n = 53, 39 ± 9 years [83]

4.6 ± 1.0 Young/premenopausal women, n = 62, 37 ± 10 years

6.2 ± 1.3 Older men, n = 78, 65 ± 7 years

6.2 ± 1.2 Older/post-menopausal women, n = 70, 65 ± 7 years

PWV = √β x P / 2 ρ 4.2 ± 0.2 Healthy volunteers (n = 18, 18 men, 22 ± 1 years) [84]

PP/(2xβ)
where PP is local carotid pulse pressure

3.7 ± 0.7 Controls (n = 26, 15 men, 19 ± 2 years) [85]

4.3 ± 0.4 Type 1 diabetics (n = 16, 11 men, age 18 ± 2 years)

PWVβ = √β × DBP/2 × ρ 6.13 ± 1.68 Control (n = 30, 23 men, 47.0 ± 14.5 years) [86]

6.99 ± 1.77 Nasopharyngeal carcinoma patients with IMT < 1.0 mm
(n = 37, 28 men, 48.9 ± 17.3 years)

7.84 ± 1.99 Nasopharyngeal carcinoma patients with 1.0 mm ≤ IMT ≤ 1.5 mm (n = 30, 
23 men, 47.6 ± 16.0 years)

PWVWI = √WI × DBP/2 × ρ 7.82 ± 2.67 Control (n = 30, 23 men, 47.0 ± 14.5 years) [86]

8.47 ± 2.51 Nasopharyngeal carcinoma patients with IMT < 1.0 mm
(n = 37, 28 men, 48.9 ± 17.3 years)

10.19 ± 3.89 Nasopharyngeal carcinoma patients with 1.0 mm ≤ IMT ≤ 1.5 mm (n = 30, 
23 men, 47.6 ± 16.0 years)
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artery. Wave intensity has been assessed during exer-
cise [69], caffeine and tobacco consumption [76], hot 
water bathing [91], chronic heart failure [59], and in 
patients with a Fontan circulation [79]. Wave intensity 
and wave energy measures are summarised in Table 2.

In examining the effect of gender on wave intensity in 
the common carotid artery, the peak amplitude and the 
net energy of FCW and BCW were higher in men [45]. 
However, when normalized for the amplitude of the for-
ward-travelling waves, the difference in BCW was abol-
ished [45]. Rakebrandt et  al. (2009) further showed an 
inverse correlation with age, diastolic blood pressure, 
local wave speed, beta stiffness index and augmentation 
index for both the FCW and BCW.

Importantly, Chiesa et  al. (2019) reported on a large 
longitudinal study showing that increased carotid FCW 
in mid- to late-life was associated with greater 10-year 
cognitive decline [9]. Higher wave reflection index (a 
measure relating the magnitude of the BCW to the 
FCW) and lower FCW has been associated with an 
increased risk of cardiovascular events [80, 92]. In the 
Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), 
it was shown that in the group treated with amlodipine 
the wave reflection index was significantly attenuated 
compared to the group treated with atenolol [66]. Man-
isty et al. also looked at the effect of atorvastin versus pla-
cebo and found that whilst there was evidence of reduced 
augmentation index and greater wave reflection from the 
body, there was no significant change in wave speed or 
wave energy [65].

From Table  2 below, it is clear the measures of wave 
intensity and wave energy cannot easily be compared 
between methods. However, looking only at the most 
common method i.e. (dP/dt) × (dU/dt), and removing 

the outliers reporting a vastly different range of val-
ues [73, 78, 79, 83, 87], the mean (± standard deviation) 
FCW intensity was 9520 ± 2258.7  mmHg  m/s3 (median 
9308  mmHg  m/s3; minimum (reported average) 
5750 mmHg m/s3, maximum (reported average) 14,700). 
The mean BCW energy was 322 ± 1484.5  mmHg  m/
s2 (median 29  mmHg  m/s2; (minimum (reported aver-
age) 18  mmHg  m/s2, maximum (reported average) 
7600 mmHg m/s2). And finally, the mean FEW intensity 
was 2039 ± 581.6  mmHg  m/s3 (median 1900  mmHg  m/
s3;(minimum (reported average) 1070 mmHg m/s3, maxi-
mum (reported average) 3220 mmHg m/s3).

4  Discussion
Wave speed and wave intensity analysis present an 
opportunity to better our understanding of the physiol-
ogy of cerebral circulation. At present, a relatively large 
body of work has been carried out assessing wave speed 
and wave intensity in the common carotid artery. How-
ever, little work has focused on intracranial blood flow or 
cerebral haemodynamics. When looking at the reports 
within studies, it is clear that various health conditions 
and physiological manipulations (such as hot baths, 
stress tests, exercise and more) are able to modify wave 
speed and wave intensity suggesting the measures are 
sensitive to change.

Local wave speed in an artery is intrinsically interest-
ing because of its effect on arterial haemodynamics and 
because it is a measure of the distensibility of the artery. 
The separation of the net wave intensity into its forward 
and backward components requires knowledge of the 
local wave speed. The disparity in the number of stud-
ies that report separated wave intensity results and those 
that report wave speeds indicates that many studies that 

Table 1 (continued)

Method of measurement Wave speed (m/s) Population References

(βP/2ρ)1/2 7.4 ± 0.2 Healthy volunteers, control, baseline (n = 18, 18 men, range 19–28 years) [87]

7.4 ± 0.2 seated 10 min

7.3 ± 0.2 seated 20 min

7.1 ± 0.2 seated 30 min

7.1 ± 0.1 Resistance exercise baseline

8.1 ± 0.2 10 min post exercise

7.6 ± 0.1 20 min post exercise

7.3 ± 0.1 30 min post exercise

Carotid wall displacement 8.3 ± 1.6 Type 2 Diabetics (n = 133, 88 men, 57 ± 4 years) [88]

Phased-tracking method 6.23 ± 0.6 Healthy volunteers (n = 3, 3 men, 28 ± 8 years) [89]

Wave speeds presented as mean ± standard deviation unless otherwise stated

*Denotes standard error
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measure or estimate wave speeds do not report them. We 
recommend that any future study that measures local 
wave speeds should report their results.

With regard to wave speed calculations, a large variabil-
ity exists between studies and methods. These differences 
are not obviously explained by method, age, gender or 
population; however, the current review did not under-
take meta-regression to understand the contributions 
of confounding or modifying factors. Nevertheless, it is 
clear that, for wave speed to be clinically and scientifically 
useful for the understanding of the cerebral circulation, a 
consensus on the reference range for normal wave speed 
is needed. To obtain this, large-scale studies investigating 
the contribution and differences in methods as well as the 
reliability and reproducibility will be necessary.

Wave speed in the extracranial common carotid, as 
opposed to the intracranial internal carotid, has been 
extensively reported. It is interesting that whilst the 
mean wave speed is in line with the systemic circulation 
at approximately 5  m/s, the range is wide and appears 
biologically improbable, at least at the lower end (mini-
mum 0.8 m/s and maximum 14 m/s). In the intracranial 
internal carotid artery, traditional wave speed estimation 
suggested a greatly reduced speed at 2-3 m/s. This must 
be interpreted with caution given the limited number of 
observations but could suggest that the internal carotid, 
and by extension the intracranial circulation, behaves 
differently to the systemic pressure/velocity wave asso-
ciations, or that corrections must be applied to the meas-
ures to account for the limited resolution in this space. 
There is evidence that intracranial arteries undergo cyclic 
distension but the distensibility appears much reduced 
compared with extracranial arteries [10]. On that basis, 
the wave speed is likely to be higher albeit not infinite.

A similar limitation exists for wave intensity. Indeed, 
the axial distension wave as assumed for the analysis of 
wave intensity may be absent or much reduced under 
the isovolumetric constraints of the cranial cavity. None-
theless, with the limited number of observations in the 
internal carotid artery and no studies directly comparing 
the dynamics between the internal and the external seg-
ment of the carotid artery, we are limited to the interpre-
tation of each in isolation.

Here, a further complication comes from the inconsist-
ent reporting both in terms of the measurement and cal-
culations presented, that is, whether the peak amplitude 
or the area under the curve is reported, but also in terms 
of the variation in units of measurements, making it chal-
lenging to directly compare between studies. A consen-
sus on a standardisation of units, e.g. to be reported as 
Standard International units for future studies would 
be useful. Whilst the conversion between units is rela-
tively trivial, comparing results of different measures and 

different methodologies is not. In addition, wave inten-
sity varies across the cardiac cycle. However, the tem-
poral variation is commonly ignored as only the peak 
systolic intensity or the total energy across the cardiac 
cycle is usually reported.

From a methodological perspective, it is worth men-
tioning that the estimate of velocity using pulsed Dopper 
use peak velocity since this is what the US device typically 
provides, Other devices (e.g. ALOKA) which use Colour 
Doppler calculate average velocity. This could introduce 
substantial differences in estimates of both wave speed 
and WI.

Despite a substantial body of research spanning 
30  years, both on the theoretical side but also on clini-
cal applications relating specifically to the carotid artery 
and clinically important scenarios such as hypertension, 
the use of wave intensity analysis is still not widespread 
in clinical practice. There are examples of ultrasound 
machines that can yield wave intensity values as part of 
the cardiovascular analytics [108] but consensus on units 
and prognostic value of wave intensity indices, in addi-
tion to reference ranges, is required to establish this indi-
cator as a useful clinical variable.

It is interesting to note that, despite the clear implica-
tions of wave speed and energy on cerebral haemody-
namics and the potential development of therapeutic 
markers of cerebrovascular health, no study has, to our 
knowledge, assessed the direct impact of wave energy or 
wave speed on the cerebral circulation by means of func-
tional or perfusion imaging. It should of course be noted 
that a limitation of the measurements in the common 
carotid is the bifurcation of this artery into the external 
and internal carotid artery of which only the internal 
carotid branch is relevant for the cerebral circulation. 
Also, an investigation of the impact of wave energy and 
wave speed on the carotid sinus baroreceptor, a homeo-
static sensor of blood pressure, has not been performed. 
Importantly, the internal carotid arteries supply the ante-
rior circulation of the cerebrum and as such the poste-
rior circulation as supplied by the vertebral arteries are 
neglected, largely due to the limitations of the current 
imaging resolution and the high risk of invasive measure-
ments in these arteries.

Overall, despite over thirty years of research and – to 
some degree – implementation of the analysis, some 
points remain to be resolved, for carotid analysis and 
wave analysis in the vasculature in general:

– Consistency around nomenclature would be benefi-
cial: this includes terms such as ‘wave’ (which often 
needs to be defined due to its many meanings) and 
terminology such as decompression vs. expansion 
(for the protodiastolic wave); the former also relates 
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to the theoretical importance of framing the analysis 
based on successive wave fronts vs. sinusoidal waves, 
potentially posing theoretical complications, such as 
discussing the arrival time of a sinusoidal wave which 
theoretically has no beginning or end. Usually, this 
is overcome by utilising phase differences, however, 
this approach is not universally applied at present.

– Consistency with respect to the use of FCW, BCW 
and FEW from wave separation as opposed to net 
wave intensity.

– Consistency around symbols: as different formula-
tions can be adopted, particularly (P, U) formulation 
vs. (A, U) or (D, U) formulations, clarity around sym-
bols would be helpful.

– Consistency around the formulation itself, with con-
sensus about the use of differences or differentials, 
i.e. dI = dPdU vs. dI/dt = dP/dt dU/dt, which in turn 
would raise the questions of I = dPdU vs. dI = dPdU.

– Systematic identification of wave intensity peaks 
could be beneficial particularly when considering 
clinical implementation, analogous to ECG peaks 
identification.

4.1  Outlook
Wave intensity and the measurement of wave speed are 
accepted techniques in the field of vascular physiology 
and arterial research. Here, we propose that wave speed 
and wave intensity may be useful non-invasive meas-
ures to better our understanding of cerebral haemody-
namic mechanisms. We suggest further work is needed 
to understand the reported variability of the measures 
across studies and to evaluate relevant reference values 
for wave speed and the wave components in the healthy 
human artery.
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