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Abstract

Wave intensity and wave speed are measures used to assess the dynamic properties of the arteries and travelling
waves within the circulation. Wave intensity and wave speed measured in the carotid artery have the potential to pro-
vide hemodynamic and biophysical insights that can advance our understanding of the physiology of cerebral circu-
lation. However, whilst studies have been performed in different patient cohorts exploring different methodological
implementations of wave intensity analysis (WIA), to date little work has been done to unify wave measures or pro-
vide reference ranges on which to build the field of research and inform clinical practice. This review thus focuses

on wave speed and wave intensity in the carotid artery in man with the aim to summarise the current knowledge

of the field. From this review, the different methods of measurement and the disparity of the reported values currently
hinder efforts to construct reference ranges for a comparator or intervention to be assessed.
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1 Introduction

Wave intensity is the rate of energy transport in a longi-
tudinal wavefront per unit area. Wave intensity analysis
(WIA) provides a quantitative measure of the incremen-
tal net energy flux density of travelling waves within the
circulation or the power carried by the wave per cross-
sectional area. The work done by the wave comprises
kinetic energy associated with the velocity of flow and
potential energy associated with the expansion of the
arterial wall [1]. Wave speed or pulse wave velocity (i.e.
the velocity at which the blood pressure pulse propagates
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in an artery or system of arteries) is often, but by no
means invariably, calculated as part of wave intensity
analysis. Wave speed is generally evaluated in early sys-
tole and is related to the distensibility of the artery as
shown by the Moens—Korteweg equation [2, 3], i.e. wave
speed is inversely proportional to the square root of
distensibility.

So far, little work has focused on the use of WIA for
understanding the cerebral circulation, or the impact of
the energy transfer from the extracranial to the intracra-
nial vessels, even though WIA has often been measured
in the common carotid artery. This is an important area
of translational and clinical research. For instance, peo-
ple with hypertension are more likely to suffer small ves-
sel disease and have poorer cerebral perfusion [4, 5], and
increased arterial pressure may heighten the risk of aneu-
rysm formation and rupture at the circle of Willis [6—8].
Understanding wave travel could potentially provide a
better understanding of such pathology and the analysis
is increasingly showing promise in this context. A recent
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study, for example, found that the forward compression
wave intensity in mid-to-late life predicted faster cogni-
tive decline independent of other cardiovascular risk fac-
tors as well as markers of carotid structure and stiffness
[9]. At present, however, there are very limited direct
measurements of the intrinsic mechanical properties of
the intracerebral arteries in vivo [10].

Let us consider the setting for this physiological
problem. Blood flow to the cerebral circulation arrives
through two artery pairs: the left and right internal
carotid arteries, which largely supply the anterior circu-
lation of the brain, and the left and right vertebral arter-
ies, responsible mainly for the posterior circulation [11].
The vertebral arteries converge over the brainstem to
form the basilar artery. The basilar artery together with
the internal carotid arteries form a ring-like anastomo-
sis known as the Circle of Willis. The basic anatomy is
shown in Fig. 1, although variants are common [12]. This
organisation allows for the re-distribution of blood based
on demand, can compensate for resistance such as ste-
nosis, and may therefore represent a collateral system to
protect against hypoperfusion. The anastomotic nature
of the cerebral arterial anatomy also enables a range of
shunt and steal phenomena [13] as illustrated by subcla-
vian steal syndrome [14], reversed Robin Hood syndrome
[15], and luxury perfusion syndrome [16, 17].

From a biophysics perspective, the cerebral circulation
is unique. Various constraints, which are set out by the
Monroe-Kellie doctrine [18], are assumed to hold true for
the perfusion of the brain to be maintained within physi-
ological boundaries. Imbalances and breaches of these

Subclavian

Internal Carotid

External Carotid

Anterior Spinal

Vertebral Artery

Page 2 of 23

assumptions are considered to cause marked pathophysi-
ological disturbances, such as Cushing’s triad, ischaemic
haemorrhage, or syncope. The first constraint is that the
cerebral circulation is encased in the isovolumetric con-
tainer of the skull. The inlets and outlets (including the
cerebrospinal fluid space) are generally through non-
compressible bone, which limits the ability for pulsatile
movement and hypertrophy at these junctures. Second,
the pressure within the skull must be maintained within
relatively narrow boundaries to avoid percussion of the
brain tissue against the bone [19]. Third, the adaption
to the systolic pressure wave must be sufficient to move
blood against gravity in the upright position [20], whilst
tolerating the orthostatic changes to the supine position
and even inversions (such as handstands and other oddi-
ties humans master).

In this context, we aim to review current knowledge on
wave speed and wave intensity measures in the carotid
artery in man. The review will summarise the effect of
interventions and any other comparations made within
each study but will not aim to compare interventions
between reports.

1.1 What is the wave speed measure?

Wave speed (c) is the speed at which a disturbance trav-
els through a medium [21]; in this case, energy through
arteries. ¢ is dependent on the viscosity of blood and the
mechanical and geometric properties of the vessel [21,
22]. ¢ is an indicator of arterial stiffness (or its inverse
distensibility [23], with higher wave speed indicating a
stiffer, less distensible vessel.
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Fig. 1 Anatomy of the cerebral circulation. Left diagram shows coronal view; Right diagram shows sagittal view
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Whilst aortic wave speed is often measured clinically
by femoral-carotid pulse wave velocity, this is a weighted
average over the arterial pathlength and does not account
for more local variation in arterial vessel mechanics and
geometry [24]. Regional, or local, wave speed can be esti-
mated by single-point methods derived from the slope
of the loop of two measured variables such as pressure
(P) and velocity (U), or flow (Q) and cross-sectional area
(A). Specifically, these methods are known as the PU-
loop [25], QA-loop [26], In(D)U-loop [27], and In(A)
U-loop [28] methods. Alternative formulations based on
the knowledge of P and U at a single point in the cardiac
cycle includes the sum of the squares methods (see [29]).
This method has the advantage of being independent of
the period of unidirectional waves required for the loop
methods but has a larger margin of error when applied to
measures taken close to a reflection site.

The linearity between pressure and diameter over the
cardiac cycle has been demonstrated using invasive pres-
sure measurements in the carotid artery [30]. However,
Kowalski et al. (2017) suggested that the wave reflections
may cause an underestimation of ¢ by — 36.9% (+6.7%)
in the carotid artery [31]. Furthermore, it has been
shown that reflected waves [32] and the proximity of the
measurement to the reflection site [32-34] significantly
influence the measured wave speed. Using the diameter-
velocity loop method, Borlotti et al. [35] showed that
proximity to the reflection site affects the measured wave
speed so that a positive reflection coefficient leads to an
underestimation of wave speed, whilst a negative reflec-
tion coefficient leads to an overestimation of wave speed.
This is particularly important in the carotid artery given
its geometry and anatomy; namely the carotid bifurcation
in the neck, the curvature of the internal carotid siphon
and the juncture at the Circle of Willis. The degree to
which the pressure and flow (or velocity) changes are
affected by reflections and the convective contribution
is assumed to be negligible in the early part of systole
when measurements of c are typically made. The linear-
ity of elasticity of the vessel wall over the physiological
pressure range is a necessary assumption, however, there
is not sufficient evidence at present to demonstrate the
absolute validity of this assumption.

When comparing the theoretical local wave speed to
that measured experimentally, discrepancies are observed
[36, 37]. Namely, based on theoretical grounds from its
composition and on experimental studies the relation-
ship between stress and strain in arteries is known to be
non-linear [38]. Nonetheless, the assumption of a unique
elastic modulus (incremental elastic modulus) may be
approximately valid within the pressure range of the car-
diac cycle, however, differences in operating pressure
may be relevant when comparing measures of ¢ between
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individuals (e.g. between normotensive and hypertensive
individuals) [39]. Extrinsic factors, the tethering of the
vessel, and the compressibility of the surrounding tissue
have also been suggested to affect ¢ [40].

Therefore, given the special limitations of the cerebral
circulation suggested above, and the internal carotid
artery in particular, measuring wave speed in this artery
experimentally is of particular future interest.

1.2 What is wave intensity analysis?

Unlike wave speed, which is measured in m/s, the units
of wave intensity depend on the method of measurement
and introduces the variable of local distensibility [41]
(e.g. if derived from pressure and velocity, it is commonly
reported in W/m? or mmHg-m-s™3, whereas if derived
from diameter and velocity it is commonly reported in
m?/s). Despite the variability of units, the measures are
essentially equivalent although not interchangeable,
and related to each other through the tube law which
describes the relationship between the pressure and the
area (or diameter) of the artery.

The original method for analysing wave intensity
(dI=dPdU) describes the use of pressure and veloc-
ity to calculate wave intensity, defined as the maxi-
mum value of the composite waves, and wave energy,
defined as the integral of the wave intensity over time.
Other approaches, such as using a logarithm of the
area and velocity, have since been proposed [28, 34]. A
large subset of studies report wave intensity using the
time-corrected formula, dP/d¢txdlU/dt. This carries the
advantage of being able to compare data acquired with
different sampling rates, but with the disadvantage that
the resulting units are complex and unintuitive to inter-
pret (mmHg-m-s~3) [42]. An alternative approach where
dI is expressed per cardiac cycle and which preserves its
interpretability has been proposed [43].

The net wave intensity can be separated into its
component forward and backward waves if the wave
speed is known [47]. Net wave intensity is a result of
the algebraic sum of the forward and backwards travel-
ling waves [44, 45]. Compression waves are associated
with a rise in pressure, whilst decompression waves
are associated with a fall in pressure. Whilst there are
many reflections and re-reflections [46], wave intensity
in most large elastic arteries is commonly described in
terms of three major wave components. The first is a
forward compression wave (FCW) which carries most
of the energy over the cardiac cycle and is a measure
of the rate of forward wave energy density propaga-
tion in early systole due to ventricular ejection. This
is followed by a smaller backward compression wave
(BCW) which, outside the coronary circulation, rep-
resents backward travelling waves (reflections) from
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Wave Intensity

Time
Fig. 2 lllustration of wave intensity (peaks) and wave energy (shaded
areas). Blue; FCW Forward Compression Wave, Red; BCW Backward
Compression Wave, Green; FEW Forward Decompression (Expansion)
Wave. NB: the latter part of the diastolic period of the cycle has been
omitted for clarity

various sites of impedance mismatching, such as those
due to branching, confluences and changes in cross-
sectional areas and/or material properties of the arter-
ies [48]. Finally at the end of systole (protodiastole), a
forward decompression wave (also known as the for-
ward expansion wave, FEW) decelerating systolic flow
in the arteries is observed. This is caused by the slowing
of ventricular contraction which creates a suction effect
preceding and contributing to aortic valve closure [49,
50]. It has also been proposed that the end-systolic
FEW is caused by the inertial effects of the negative re-
reflection of the BCW [49]. Figure 2 illustrates the vari-
ous wave components.

A strong correlation between the energy of the BCW
and FCW has been shown in the common carotid
artery of healthy volunteers, suggesting that the for-
ward wave energy generated by the left ventricle is a
predictor of the amplitude of the reflected wave [45]
Anti-hypertensive treatment, which effectively lowers
blood pressure, increases the FCW and decreases the
BCW [51]. In a virtual population of 2000 subjects, it
was shown that wave intensity analysis may prove use-
ful in the diagnostics and treatment of people with
heart failure [52].

Interestingly, in the carotid artery, another forward
decompression wave in mid-systole has been reported
[42, 49, 53]. This wave is reported to have a variable
size. Hughes et al. [53] saw that this augmentation in
the carotid artery was associated with a larger second
forward decompression wave, suggesting a possible
relationship between the additional wave and inertial
or re-reflection effects.
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2 Methods

This systematic review follows the PRISMA-P guide-
lines for systematic reviews [54]. The inclusion criteria
were original research articles measuring local wave
speed or wave intensity in the human carotid artery.
Studies reporting any of the measures (i.e. wave speed,
wave intensity, forward compression wave energy, for-
ward decompression wave energy, backward compres-
sion wave energy) were included regardless of whether
they reported only a subset of the measures. Articles
were included if they had full-text versions available
in English and were published between 1990 and Janu-
ary 1st 2023. Review articles, meta-analyses, studies in
non-human species and in silico models were excluded.

The following PubMed searches were run on the 15th
of April 2020, repeated on the 1st of April 2021, and on
the 12th February 2023 with the following terms: (1.)
carotid artery+wave speed, (2.) carotid artery+ wave
intensity analysis, (3.) internal carotid artery+wave
speed, (4.) internal carotid artery+wave intensity
analysis.

Data extracted were directly from the articles and
checked by the second investigator independently. The
data extracted was: (1) Wave speed, (2) Net wave inten-
sity or energy, (3) forward compression wave intensity
or energy, (4) forward decompression wave intensity or
energy, and (5) backward compression wave intensity
or energy.

Risk of bias was not assessed as the bias domains [55]
were not considered relevant to the particular type of
studies available in the literature. For example, selec-
tion, performance and detection bias require the blind-
ing of outcome assessment, which was not a feasible
objective. Further, attrition bias, reporting bias and
other biases are better assessed against a standard con-
vention of reporting which is not available at the pre-
sent time for wave speed or wave intensity analysis in
the carotid artery. Instead, data are presented with the
details of the population studies in each case, as well as
the method of measurement.

3 Results

The search yielded a total of 279 articles, of which 14
were duplicates, resulting in a total of 265 articles that
were screened based on abstract content. In total, 59
articles were ultimately included. These contained
either wave intensity analysis in the carotid artery, wave
speed measurements in the carotid artery, or both.
PRISMA flow diagram is shown in Fig. 3.
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Fig. 3 PRISMA flow diagram of the records identified, screened and included

3.1 Wave speed in the common carotid artery and its
branches

Only two studies measured wave speed in the internal
carotid artery experimentally [56, 57]. Neumann et al.
found wave speeds around 1-1.5 m/s in the internal
carotid artery using the InA-U loop method. Ayadi et al.
used two methods of wave speed estimation, i.e. the
foot-to-foot method (¢ = %, where Delta z represents
the distance between two anatomical cross sections,
and Delta t is the time interval between the feet of two
waves) and a mathematical modification of the foot-
to-foot model (summarised as (¢ = %, where L is the
distance between the measurement point and reflection
area and t, is the arrival time of the first reflected wave).
Using the traditional foot-to-foot method, the authors
reported a similar wave speed of 2.6+0.2 m/s in the
young (n=11, 0 men, 29.4 £ 6.8 years), and 3.3+0.3 m/s
in the older group (n=11, 8 men, 66 + 14.9 years). How-
ever, using the new mathematical model which corrects
for the temporal inaccuracy of the foot-to-foot method,
the authors reported wave speeds of 5.2 £ 0.5 m/s in the
young, and 6.3+0.4 m/s in the older group, suggest-
ing more traditional methods may underestimate wave
speed in the internal carotid artery [56].

All other studies report wave speed in the common
carotid artery. The measurements in the human carotid
artery are summarised in Table 1.

The average wave speed (tstandard deviation)
reported in healthy volunteers (regardless of method)
was 5.58+2.1 m/s, with the median wave speed at
5.38 m/s. The minimum average speed was reported in
endurance-trained men (0.8 m/s, age 27 + 4 years) using
the InDU loop method [58] and the maximum was
reported in healthy volunteers (14.2 m/s, 60+ 9 years)
using the PU loop method [59].

Whilst it is known that wave speed increases with age
[60], this accounts for 2—-3 m/s of the variability and,
therefore, the range of values reported in the literature
cannot be accounted for by age alone. Interestingly, it
was not possible to determine a bias to yield a higher or
lower wave speed value based on the method used.

One study reported wave speed in the left and the
right common carotid separately, using three different
methods of measurement, and found that wave speed
was consistently higher in the right compared to the
left CCA [61].

Wave speed is consistently reported as marginally
higher in men compared to women [45, 62].

3.2 Wave intensity in the carotid artery

Wave intensity in the internal carotid artery was
assessed in two studies only [56, 90], while several stud-
ies have assessed wave intensity in the common carotid
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Table 1 Wave speed in human common carotid artery
Method of measurement Wave speed (m/s) Population References
PU .0 (left CCA) Healthy volunteers (n=8, 8 men, age range 23-31 years) [61]
8 (right CCA)
Wave component p &u 5 (left CCA)
.7 (right CCA)
Sum of the squares (c32) 9 (left CCA)
740 (right CCA)
PU (Bramwell Hill) 6.17+1.34 Volunteers (n1=22, 13 men, 49+ 17 years) [63]
PU loop 7.53 (+2.85) Healthy volunteers (n=37, 17 Men, 47.2+ 5.4 years) obtained [32]
QA loop 34411 from the Asklepios population study [64]
PU1-5 (harmonic-based correction) 499+0.87
PU loop (Median) 8.7 Placebo, ASCOT substudy (n=62, 57 male, 64+ 7 years) [65]
8.1 Atorvastatin, ASCOT substudy (n=78, 70 male, 64 + 8 years)
PU loop 85+3.1 Amlodipine-based regimen, ASCOT substudy (n=122,99 men, [66]
64.3+7.1 years)
90+54 Atenolol-based regimen, ASCOT substudy (n=138, 119 men,
63.3+7.6 years)
PU loop 142+14 Healthy volunteers (n=29,13 men, 60+ 9 years) [59]
140+09 Compensated systolic heart failure patients on medication (n=67, 42
men, 66+ 10 years)
PU loop 75+24 Hypertensive, treated, volunteers (=12, 12 men, 63 £9 years) [67]
PU loop 540 (£0.34%) Healthy volunteers (n=21, 14 men, 44 +6 years) [42]
IN(D)P loop [31] 39+05 Ex pre-term (n=76,40 men age 182+ 1.3 years,) [68]
39+05 Control (n=42,age 18.6+0.9, 16 men)
n(D)P loop 3494045 Control group (n=42, 15 male, median age 19 years) [68]
3.71+0.50 Coarctation Patients (=43, 21 male, median age 25 years)
InDU loop 84+19 Healthy volunteers (n=12, 6 men, aged 27 +2 years) [69]
Rest Day 1
10.2+34 Exercise 1
79126 Rest Day 2
93+32 Exercise Day 2
InDU loop 10.6 Healthy volunteer (n=1) [70]
InDU loop Q@371 (x1.21) Volunteer, subgroup of Asklepios population study [64]s (n=70,35 men,  [62]
34.16 (£1.58) age range 35-55 years)
InDU loop £ (1/2) (dU, /dInD,) 403+1.64 Volunteers, subgroup of Asklepios population study [64] (n=1774, 840 [24]
men, mean age 45.8+6 years)
InDU loop +(1/2) (dU, /dInD,) 445+0.73 Volunteers free of major cardiovascular events (n=47, 59% men, mean 71]
age 24+ 5 years)
558+1.12 Volunteers free of major cardiovascular events (n=78, 53% men, mean
age 51+6 years)
6.49+1.50 Volunteers free of major cardiovascular events (n=78, 68% men, mean
age 67 £5 years)
InDU loop 6.9 Hypertensive patient (n=1) [27]
InDU loop 0.8+0.2 Endurance trained volunteers (n=8, 8 men, aged 27 +4 years) [58]
DU; Bramwell-Hill equation based 89+18 Type 2 diabetics (n=191, 148 men, aged 65+ 7 years) [72]
on distension curve 79415 Non-diabetics (n=94, 66 men, aged 62 + 8 years)
(dP/dU)/p 310+13 Healthy volunteers, baseline (=55, 12 men, 22 +5 years) [73]
400+1.9 After exercise
One-point carotid PWV[ (m/s) 408+0.51 Baseline, healthy volunteers (n=55, 12 men, 22 +5 years)
4444120 Post high-intensity cycling, healthy volunteers
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Table 1 (continued)
Method of measurement Wave speed (m/s) Population References
(dP/dU)/p 6.8+1.1 Normotensive volunteers (n=20, 13 men, 56 +4 years) [74]
78+10 Hypertensive volunteers (=21, 14 men, 58 £ 8 years)
75+14 Hypertensive volunteers after 3 months of barnidipine therapy
75+1.7 Hypertensive volunteers after 6 months of barnidipine therapy
(dP/dU)/p 35+49 Children of African American descend (n= 154, 66% male, 10.3+0.9 years) [75]
33+13 Children of white descend (n=115, 64% male, 10.6+0.9 years)
(dP/dU)x 1/p 5.7 (Median) Healthy men (n=57 men, 47+ 13 years) [45]
6.2 (Median) Healthy women (n=49 men, 45+ 12 years)
dP/(o x dU) 40+06 Healthy volunteers (n=10, 5 men, 42+ 13 years) [76]
37+03 Control group (60 min)
3.7+03 Caffeine group (baseline) (n=17, 8 men, 42+ 13 years)
45+04 Caffeine group (60 min)
(dP/dU) x p 428+10 Healthy volunteers, Baseline (n1=22, 22 male, 21.7 + 1.4 years) [77]
558+1.68 Cold Pressor Test
(dP/dU) x p 33+14 Healthy volunteers, before exercise (n=16, 16 men, 26 + 6 years) [78]
46+13 After exercise
PWV = (Ps — Pd)/2 * In(Ps/Pd)[(Ds - Dd)Dd] 4.03+0.19 Healthy volunteers (n=191, 50 men) [60]
N=28 (aged 20-30)
5.16+0.31 N=15 (aged 30-40)
6.20+0.17 N=34 (aged 40-50)
6.36+0.12 N=73 (aged 50-60)
692+1.17 N=34 (aged 60-70)
PWV 3.90+0.8 Control (n=20, 12 male, 13.4+6.0 years) [79]
In((Ps/Pd)/(Ds/Dd) - 1) x Pd /2 )2 356+0.10 Fontan (n=34, 16 male, 11.5+8.6 years)
One-point carotid PWV (m/s) 6.8+1.5 Survivors of patients with congestive heart failure and reduced ejection  [80]
fraction (n1=39,69.6+12.7)
6.6+1.7 Non-survivors of patients with congestive heart failure and reduced ejec-
tion fraction (n=23, 69.1+9.2)
One-point carotid PWVB (m/s) 535+1.2 Male healthy volunteers (n=388,43.0£17.4) [81]
548+13 Female healthy volunteers (n=292,44.8+17.7 years)
One-point carotid PWV (m/s) 542+10 Normotensive (n=145,91 men, 50+ 10.1 years) [82]
65+1.6 Hypertensive (n=145, 96 men, 51.9+12.1 years)
PWVB (m/s) 53+1.0 Young men, n=53,39+9 years [83]
where f=In(Ps/Pd)/[(Ds - Da)/Dd] 46+10 Young/premenopausal women, n=62, 37+ 10 years
62+13 Older men, n=78,65+7 years
62+12 Older/post-menopausal women, n=70, 65+ 7 years
PWV=+BxP/2p 42402 Healthy volunteers (n=18, 18 men, 22+ 1 years) [84]
PP/(2xB) 3.7+07 Controls (n=26, 15 men, 19+ 2 years) [85]
where PP is local carotid pulse pressure 43+04 Type 1 diabetics (1=16, 11 men, age 18+ 2 years)
PWVR=+/BxDBP/2xp 6.13+1.68 Control (n=30, 23 men, 47.0+ 14.5 years) [86]
6.99+1.77 Nasopharyngeal carcinoma patients with IMT < 1.0 mm
(n=37,28 men, 489+ 17.3 years)
7.84+1.99 Nasopharyngeal carcinoma patients with 1.0 mm <IMT < 1.5 mm (n=30,
23 men, 47.6+16.0 years)
PWVWI =+/WIx DBP/2xp 7.82+267 Control (n=30, 23 men, 47.0+ 14.5 years) [86]
847+251 Nasopharyngeal carcinoma patients with IMT < 1.0 mm
(n=37,28 men, 489+ 17.3 years)
10.19+3.89 Nasopharyngeal carcinoma patients with 1.0 mm <IMT< 1.5 mm (n=30,

23 men, 47.6+16.0 years)
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Table 1 (continued)
Method of measurement Wave speed (m/s) Population References

(ﬁP/Zp)V2 74+02 Healthy volunteers, control, baseline (n=18, 18 men, range 19-28 years)  [87]
74+£0.2 seated 10 min
73%02 seated 20 min
71£0.2 seated 30 min
7.1+0.1 Resistance exercise baseline
8.1+0.2 10 min post exercise
7.6+0.1 20 min post exercise
73£0.1 30 min post exercise
Carotid wall displacement 83+16 Type 2 Diabetics (n=133, 88 men, 57 +4 years) [88]
Phased-tracking method 6.23+0.6 Healthy volunteers (n=3, 3 men, 28 + 8 years) [89]

Wave speeds presented as mean *standard deviation unless otherwise stated
*Denotes standard error

artery. Wave intensity has been assessed during exer-
cise [69], caffeine and tobacco consumption [76], hot
water bathing [91], chronic heart failure [59], and in
patients with a Fontan circulation [79]. Wave intensity
and wave energy measures are summarised in Table 2.

In examining the effect of gender on wave intensity in
the common carotid artery, the peak amplitude and the
net energy of FCW and BCW were higher in men [45].
However, when normalized for the amplitude of the for-
ward-travelling waves, the difference in BCW was abol-
ished [45]. Rakebrandt et al. (2009) further showed an
inverse correlation with age, diastolic blood pressure,
local wave speed, beta stiffness index and augmentation
index for both the FCW and BCW.

Importantly, Chiesa et al. (2019) reported on a large
longitudinal study showing that increased carotid FCW
in mid- to late-life was associated with greater 10-year
cognitive decline [9]. Higher wave reflection index (a
measure relating the magnitude of the BCW to the
FCW) and lower FCW has been associated with an
increased risk of cardiovascular events [80, 92]. In the
Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT),
it was shown that in the group treated with amlodipine
the wave reflection index was significantly attenuated
compared to the group treated with atenolol [66]. Man-
isty et al. also looked at the effect of atorvastin versus pla-
cebo and found that whilst there was evidence of reduced
augmentation index and greater wave reflection from the
body, there was no significant change in wave speed or
wave energy [65].

From Table 2 below, it is clear the measures of wave
intensity and wave energy cannot easily be compared
between methods. However, looking only at the most
common method i.e. (dP/d¢)x(dU/d¢), and removing

the outliers reporting a vastly different range of val-
ues [73, 78, 79, 83, 87], the mean (+standard deviation)
FCW intensity was 9520 +2258.7 mmHg m/s® (median
9308 mmHg m/s%; minimum (reported average)
5750 mmHg m/s®, maximum (reported average) 14,700).
The mean BCW energy was 322+1484.5 mmHg m/
s? (median 29 mmHg m/s% (minimum (reported aver-
age) 18 mmHg m/s>, maximum (reported average)
7600 mmHg m/s%). And finally, the mean FEW intensity
was 2039+ 581.6 mmHg m/s® (median 1900 mmHg m/
s%(minimum (reported average) 1070 mmHg m/s?, maxi-
mum (reported average) 3220 mmHg m/s3).

4 Discussion

Wave speed and wave intensity analysis present an
opportunity to better our understanding of the physiol-
ogy of cerebral circulation. At present, a relatively large
body of work has been carried out assessing wave speed
and wave intensity in the common carotid artery. How-
ever, little work has focused on intracranial blood flow or
cerebral haemodynamics. When looking at the reports
within studies, it is clear that various health conditions
and physiological manipulations (such as hot baths,
stress tests, exercise and more) are able to modify wave
speed and wave intensity suggesting the measures are
sensitive to change.

Local wave speed in an artery is intrinsically interest-
ing because of its effect on arterial haemodynamics and
because it is a measure of the distensibility of the artery.
The separation of the net wave intensity into its forward
and backward components requires knowledge of the
local wave speed. The disparity in the number of stud-
ies that report separated wave intensity results and those
that report wave speeds indicates that many studies that
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measure or estimate wave speeds do not report them. We
recommend that any future study that measures local
wave speeds should report their results.

With regard to wave speed calculations, a large variabil-
ity exists between studies and methods. These differences
are not obviously explained by method, age, gender or
population; however, the current review did not under-
take meta-regression to understand the contributions
of confounding or modifying factors. Nevertheless, it is
clear that, for wave speed to be clinically and scientifically
useful for the understanding of the cerebral circulation, a
consensus on the reference range for normal wave speed
is needed. To obtain this, large-scale studies investigating
the contribution and differences in methods as well as the
reliability and reproducibility will be necessary.

Wave speed in the extracranial common carotid, as
opposed to the intracranial internal carotid, has been
extensively reported. It is interesting that whilst the
mean wave speed is in line with the systemic circulation
at approximately 5 m/s, the range is wide and appears
biologically improbable, at least at the lower end (mini-
mum 0.8 m/s and maximum 14 m/s). In the intracranial
internal carotid artery, traditional wave speed estimation
suggested a greatly reduced speed at 2-3 m/s. This must
be interpreted with caution given the limited number of
observations but could suggest that the internal carotid,
and by extension the intracranial circulation, behaves
differently to the systemic pressure/velocity wave asso-
ciations, or that corrections must be applied to the meas-
ures to account for the limited resolution in this space.
There is evidence that intracranial arteries undergo cyclic
distension but the distensibility appears much reduced
compared with extracranial arteries [10]. On that basis,
the wave speed is likely to be higher albeit not infinite.

A similar limitation exists for wave intensity. Indeed,
the axial distension wave as assumed for the analysis of
wave intensity may be absent or much reduced under
the isovolumetric constraints of the cranial cavity. None-
theless, with the limited number of observations in the
internal carotid artery and no studies directly comparing
the dynamics between the internal and the external seg-
ment of the carotid artery, we are limited to the interpre-
tation of each in isolation.

Here, a further complication comes from the inconsist-
ent reporting both in terms of the measurement and cal-
culations presented, that is, whether the peak amplitude
or the area under the curve is reported, but also in terms
of the variation in units of measurements, making it chal-
lenging to directly compare between studies. A consen-
sus on a standardisation of units, e.g. to be reported as
Standard International units for future studies would
be useful. Whilst the conversion between units is rela-
tively trivial, comparing results of different measures and
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different methodologies is not. In addition, wave inten-
sity varies across the cardiac cycle. However, the tem-
poral variation is commonly ignored as only the peak
systolic intensity or the total energy across the cardiac
cycle is usually reported.

From a methodological perspective, it is worth men-
tioning that the estimate of velocity using pulsed Dopper
use peak velocity since this is what the US device typically
provides, Other devices (e.g. ALOKA) which use Colour
Doppler calculate average velocity. This could introduce
substantial differences in estimates of both wave speed
and W1

Despite a substantial body of research spanning
30 years, both on the theoretical side but also on clini-
cal applications relating specifically to the carotid artery
and clinically important scenarios such as hypertension,
the use of wave intensity analysis is still not widespread
in clinical practice. There are examples of ultrasound
machines that can yield wave intensity values as part of
the cardiovascular analytics [108] but consensus on units
and prognostic value of wave intensity indices, in addi-
tion to reference ranges, is required to establish this indi-
cator as a useful clinical variable.

It is interesting to note that, despite the clear implica-
tions of wave speed and energy on cerebral haemody-
namics and the potential development of therapeutic
markers of cerebrovascular health, no study has, to our
knowledge, assessed the direct impact of wave energy or
wave speed on the cerebral circulation by means of func-
tional or perfusion imaging. It should of course be noted
that a limitation of the measurements in the common
carotid is the bifurcation of this artery into the external
and internal carotid artery of which only the internal
carotid branch is relevant for the cerebral circulation.
Also, an investigation of the impact of wave energy and
wave speed on the carotid sinus baroreceptor, a homeo-
static sensor of blood pressure, has not been performed.
Importantly, the internal carotid arteries supply the ante-
rior circulation of the cerebrum and as such the poste-
rior circulation as supplied by the vertebral arteries are
neglected, largely due to the limitations of the current
imaging resolution and the high risk of invasive measure-
ments in these arteries.

Overall, despite over thirty years of research and — to
some degree — implementation of the analysis, some
points remain to be resolved, for carotid analysis and
wave analysis in the vasculature in general:

— Consistency around nomenclature would be benefi-
cial: this includes terms such as ‘wave’ (which often
needs to be defined due to its many meanings) and
terminology such as decompression vs. expansion
(for the protodiastolic wave); the former also relates
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to the theoretical importance of framing the analysis
based on successive wave fronts vs. sinusoidal waves,
potentially posing theoretical complications, such as
discussing the arrival time of a sinusoidal wave which
theoretically has no beginning or end. Usually, this
is overcome by utilising phase differences, however,
this approach is not universally applied at present.

— Consistency with respect to the use of FCW, BCW
and FEW from wave separation as opposed to net
wave intensity.

— Consistency around symbols: as different formula-
tions can be adopted, particularly (P, U) formulation
vs. (A, U) or (D, U) formulations, clarity around sym-
bols would be helpful.

— Consistency around the formulation itself, with con-
sensus about the use of differences or differentials,
ie. dI=dPdU vs. dI/dt=dP/d¢t dU/d¢, which in turn
would raise the questions of /=dPdU vs. d/=dPdU.

— Systematic identification of wave intensity peaks
could be beneficial particularly when considering
clinical implementation, analogous to ECG peaks
identification.

4.1 Outlook

Wave intensity and the measurement of wave speed are
accepted techniques in the field of vascular physiology
and arterial research. Here, we propose that wave speed
and wave intensity may be useful non-invasive meas-
ures to better our understanding of cerebral haemody-
namic mechanisms. We suggest further work is needed
to understand the reported variability of the measures
across studies and to evaluate relevant reference values
for wave speed and the wave components in the healthy
human artery.
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